Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Healthcare (Basel) ; 11(6)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2280756

ABSTRACT

In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia. First, a pre-processing method based on a Gaussian filter and logarithmic operator is applied to input chest X-ray (CXR) images to improve the poor-quality images by enhancing the contrast, reducing the noise, and smoothing the image. Second, robust features are extracted from each enhanced chest X-ray image using a Convolutional Neural Network (CNNs) transformer and an optimal collection of grey-level co-occurrence matrices (GLCM) that contain features such as contrast, correlation, entropy, and energy. Finally, based on extracted features from input images, a random forest machine learning classifier is used to classify images into three classes, such as COVID-19, pneumonia, or normal. The predicted output from the model is combined with Gradient-weighted Class Activation Mapping (Grad-CAM) visualisation for diagnosis. (3) Results: Our work is evaluated using public datasets with three different train-test splits (70-30%, 80-20%, and 90-10%) and achieved an average accuracy, F1 score, recall, and precision of 97%, 96%, 96%, and 96%, respectively. A comparative study shows that our proposed method outperforms existing and similar work. The proposed approach can be utilised to screen COVID-19-infected patients effectively. (4) Conclusions: A comparative study with the existing methods is also performed. For performance evaluation, metrics such as accuracy, sensitivity, and F1-measure are calculated. The performance of the proposed method is better than that of the existing methodologies, and it can thus be used for the effective diagnosis of the disease.

2.
Sensors (Basel) ; 23(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2241694

ABSTRACT

Despite the fact that COVID-19 is no longer a global pandemic due to development and integration of different technologies for the diagnosis and treatment of the disease, technological advancement in the field of molecular biology, electronics, computer science, artificial intelligence, Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen-antibody, and CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include deep learning and transfer learning approach. The review also provide comparison between these two emerging technologies and open research issues for the development of smart-IoMT-enabled platforms for the detection of COVID-19.


Subject(s)
COVID-19 , Internet of Things , Humans , Artificial Intelligence , COVID-19/diagnosis , Technology , Internet
3.
2022 RIVF International Conference on Computing and Communication Technologies, RIVF 2022 ; : 140-144, 2022.
Article in English | Scopus | ID: covidwho-2236691

ABSTRACT

In this paper, we present an approach for COVID-19 identification from chest X-ray images by using high-resolution neural networks. These networks allow to connect high-to-low convolution streams in parallel. They can maintain high-resolution representations and generate different resolutions throughout the whole process. The high-resolution based models have shown the superior performance in several applications. The experiments were evaluated on a collection of three data sources containing 24,786 lung X-ray images, which were categorized into three classes including covid pneumonia, non-pneumonia, and viral pneumonia. The proposed approach can attain the overall accuracy of 98.2% and 97.56% for the training and testing set, respectively. The accuracy for each class is 99.37%, 94.83%, and 97.27%, respectively, for non-pneumonia, covid-pneumonia, and viral-pneumonia. © 2022 IEEE.

4.
Pediatr Radiol ; 2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2219957

ABSTRACT

Tuberculosis (TB) continues to be a leading cause of death in children despite global efforts focused on early diagnosis and interventions to limit the spread of the disease. This challenge has been made more complex in the context of the coronavirus pandemic, which has disrupted the "End TB Strategy" and framework set out by the World Health Organization (WHO). Since the inception of artificial intelligence (AI) more than 60 years ago, the interest in AI has risen and more recently we have seen the emergence of multiple real-world applications, many of which relate to medical imaging. Nonetheless, real-world AI applications and clinical studies are limited in the niche area of paediatric imaging. This review article will focus on how AI, or more specifically deep learning, can be applied to TB diagnosis and management in children. We describe how deep learning can be utilised in chest imaging to provide computer-assisted diagnosis to augment workflow and screening efforts. We also review examples of recent AI applications for TB screening in resource constrained environments and we explore some of the challenges and the future directions of AI in paediatric TB.

5.
Diagnostics (Basel) ; 13(1)2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2199870

ABSTRACT

Chest X-ray radiography (CXR) is among the most frequently used medical imaging modalities. It has a preeminent value in the detection of multiple life-threatening diseases. Radiologists can visually inspect CXR images for the presence of diseases. Most thoracic diseases have very similar patterns, which makes diagnosis prone to human error and leads to misdiagnosis. Computer-aided detection (CAD) of lung diseases in CXR images is among the popular topics in medical imaging research. Machine learning (ML) and deep learning (DL) provided techniques to make this task more efficient and faster. Numerous experiments in the diagnosis of various diseases proved the potential of these techniques. In comparison to previous reviews our study describes in detail several publicly available CXR datasets for different diseases. It presents an overview of recent deep learning models using CXR images to detect chest diseases such as VGG, ResNet, DenseNet, Inception, EfficientNet, RetinaNet, and ensemble learning methods that combine multiple models. It summarizes the techniques used for CXR image preprocessing (enhancement, segmentation, bone suppression, and data-augmentation) to improve image quality and address data imbalance issues, as well as the use of DL models to speed-up the diagnosis process. This review also discusses the challenges present in the published literature and highlights the importance of interpretability and explainability to better understand the DL models' detections. In addition, it outlines a direction for researchers to help develop more effective models for early and automatic detection of chest diseases.

6.
13th International Conference on Electrical and Electronics Engineering, ELECO 2021 ; : 229-233, 2021.
Article in English | Scopus | ID: covidwho-1727219

ABSTRACT

This study conducts a successful approach on Computer Aided Diagnosis area with using Image processing methods, optimized version of Artificial Neural Network (ANN) with Levenberg Marquardt (LM) algorithm, Deep Learning models (CNN based AlexNet, ResNet-50 and optimized version of CNN with GA). Totally, 1000 patients with COVID-19 (%50 of male and %50 of female), including %50 of severe and %50 of moderate cases and 100 healthy/normal participants were used and evaluated. According to ROC analysis, the case prediction performance/accuracy was provided from ANNLM as %96, AlexNet as %87, ResNet-50 as %95 and CNNGA as %98.5. The assessment of lung pneumonia in COVID-19 chest CT data was successfully achieved by a product available image processing, ANN and deep learning based approach. With using this, fast and accurate detection and classification stages have been successfully achieved by radiologists and doctors. © 2021 Chamber of Turkish Electrical Engineers.

7.
International Youth Conference on Electronics, Telecommunications, and Information Technologies, YETI 2021 ; 268:85-96, 2022.
Article in English | Scopus | ID: covidwho-1702500

ABSTRACT

Due to the worldwide spread of the COVID-19, efforts to combat the disease have intensified. Among these efforts, the only effective way to prevent further spread to communities and disease progression is to control the spread of the disease, which is done using public vaccination as well as repeated and rapid testing to diagnose and isolate sick people. In this regard, computer systems with the help of medical science can speed up the diagnosis of COVID-19 disease. This paper, proposed a review of the methods used in rapid and automatic detection of COVID-19 using CT scan images. Finally, by presenting a new method based on deep learning, the obtained results compared with the results of widely used algorithms such as VGG-16 and MobileNet. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

8.
International Youth Conference on Electronics, Telecommunications, and Information Technologies, YETI 2021 ; 268:67-76, 2022.
Article in English | Scopus | ID: covidwho-1701190

ABSTRACT

As the prevalence of COVID-19, concerns about the treatment of the disease and its impact on communities’ future have increased sharply. The best way to prevent the spread of COVID-19 disease is to quickly diagnose patients and prevent them from coming into contact with healthy people. Computer methods are very effective in finding patients with COVID-19 and speed up the diagnosis. These methods are also widely used to assess a patient’s condition, for example, to assess the disease’s progression over time and to measure the rate of spread of the virus in the lungs. In this article, a segmentation method is introduced to segment the infected parts of the lung in CT scans. This method is based on Lazy-Snipping and Super-pixel algorithms. As a result of segmentation, the performance of algorithm is presented and compared with other methods using Dice score which was 80%. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

9.
Comput Biol Med ; 141: 105172, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588028

ABSTRACT

The efforts made to prevent the spread of COVID-19 face specific challenges in diagnosing COVID-19 patients and differentiating them from patients with pulmonary edema. Although systemically administered pulmonary vasodilators and acetazolamide are of great benefit for treating pulmonary edema, they should not be used to treat COVID-19 as they carry the risk of several adverse consequences, including worsening the matching of ventilation and perfusion, impaired carbon dioxide transport, systemic hypotension, and increased work of breathing. This study proposes a machine learning-based method (EDECOVID-net) that automatically differentiates the COVID-19 symptoms from pulmonary edema in lung CT scans using radiomic features. To the best of our knowledge, EDECOVID-net is the first method to differentiate COVID-19 from pulmonary edema and a helpful tool for diagnosing COVID-19 at early stages. The EDECOVID-net has been proposed as a new machine learning-based method with some advantages, such as having simple structure and few mathematical calculations. In total, 13 717 imaging patches, including 5759 COVID-19 and 7958 edema images, were extracted using a CT incision by a specialist radiologist. The EDECOVID-net can distinguish the patients with COVID-19 from those with pulmonary edema with an accuracy of 0.98. In addition, the accuracy of the EDECOVID-net algorithm is compared with other machine learning methods, such as VGG-16 (Acc = 0.94), VGG-19 (Acc = 0.96), Xception (Acc = 0.95), ResNet101 (Acc = 0.97), and DenseNet20l (Acc = 0.97).


Subject(s)
COVID-19 , Deep Learning , Pulmonary Edema , Computers , Humans , Lung/diagnostic imaging , Pulmonary Edema/diagnostic imaging , SARS-CoV-2 , Tomography, X-Ray Computed
10.
Comput Biol Med ; 138: 104895, 2021 11.
Article in English | MEDLINE | ID: covidwho-1446548

ABSTRACT

The COVID-19 pandemic has collapsed the public healthcare systems, along with severely damaging the economy of the world. The SARS-CoV-2 virus also known as the coronavirus, led to community spread, causing the death of more than a million people worldwide. The primary reason for the uncontrolled spread of the virus is the lack of provision for population-wise screening. The apparatus for RT-PCR based COVID-19 detection is scarce and the testing process takes 6-9 h. The test is also not satisfactorily sensitive (71% sensitive only). Hence, Computer-Aided Detection techniques based on deep learning methods can be used in such a scenario using other modalities like chest CT-scan images for more accurate and sensitive screening. In this paper, we propose a method that uses a Sugeno fuzzy integral ensemble of four pre-trained deep learning models, namely, VGG-11, GoogLeNet, SqueezeNet v1.1 and Wide ResNet-50-2, for classification of chest CT-scan images into COVID and Non-COVID categories. The proposed framework has been tested on a publicly available dataset for evaluation and it achieves 98.93% accuracy and 98.93% sensitivity on the same. The model outperforms state-of-the-art methods on the same dataset and proves to be a reliable COVID-19 detector. The relevant source codes for the proposed approach can be found at: https://github.com/Rohit-Kundu/Fuzzy-Integral-Covid-Detection.


Subject(s)
COVID-19 , Deep Learning , Humans , Lung , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed
11.
Multimed Tools Appl ; 81(1): 31-50, 2022.
Article in English | MEDLINE | ID: covidwho-1384535

ABSTRACT

The COVID-19 virus has caused a worldwide pandemic, affecting numerous individuals and accounting for more than a million deaths. The countries of the world had to declare complete lockdown when the coronavirus led to community spread. Although the real-time Polymerase Chain Reaction (RT-PCR) test is the gold-standard test for COVID-19 screening, it is not satisfactorily accurate and sensitive. On the other hand, Computer Tomography (CT) scan images are much more sensitive and can be suitable for COVID-19 detection. To this end, in this paper, we develop a fully automated method for fast COVID-19 screening by using chest CT-scan images employing Deep Learning techniques. For this supervised image classification problem, a bootstrap aggregating or Bagging ensemble of three transfer learning models, namely, Inception v3, ResNet34 and DenseNet201, has been used to boost the performance of the individual models. The proposed framework, called ET-NET, has been evaluated on a publicly available dataset, achieving 97.81±0.53% accuracy, 97.77±0.58% precision, 97.81±0.52% sensitivity and 97.77±0.57% specificity on 5-fold cross-validation outperforming the state-of-the-art method on the same dataset by 1.56%. The relevant codes for the proposed approach are accessible in: https://github.com/Rohit-Kundu/ET-NET_Covid-Detection.

12.
Comput Biol Med ; 137: 104781, 2021 10.
Article in English | MEDLINE | ID: covidwho-1370467

ABSTRACT

Recently, automatic computer-aided detection (CAD) of COVID-19 using radiological images has received a great deal of attention from many researchers and medical practitioners, and consequently several CAD frameworks and methods have been presented in the literature to assist the radiologist physicians in performing diagnostic COVID-19 tests quickly, reliably and accurately. This paper presents an innovative framework for the automatic detection of COVID-19 from chest X-ray (CXR) images, in which a rich and effective representation of lung tissue patterns is generated from the gray level co-occurrence matrix (GLCM) based textural features. The input CXR image is first preprocessed by spatial filtering along with median filtering and contrast limited adaptive histogram equalization to improve the CXR image's poor quality and reduce image noise. Automatic thresholding by the optimized formula of Otsu's method is applied to find a proper threshold value to best segment lung regions of interest (ROIs) out from CXR images. Then, a concise set of GLCM-based texture features is extracted to accurately represent the segmented lung ROIs of each CXR image. Finally, the normalized features are fed into a trained discriminative latent-dynamic conditional random fields (LDCRFs) model for fine-grained classification to divide the cases into two categories: COVID-19 and non-COVID-19. The presented method has been experimentally tested and validated on a relatively large dataset of frontal CXR images, achieving an average accuracy, precision, recall, and F1-score of 95.88%, 96.17%, 94.45%, and 95.79%, respectively, which compare favorably with and occasionally exceed those previously reported in similar studies in the literature.


Subject(s)
COVID-19 , Humans , SARS-CoV-2
13.
J Med Internet Res ; 23(4): e27468, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1219288

ABSTRACT

BACKGROUND: Owing to the COVID-19 pandemic and the imminent collapse of health care systems following the exhaustion of financial, hospital, and medicinal resources, the World Health Organization changed the alert level of the COVID-19 pandemic from high to very high. Meanwhile, more cost-effective and precise COVID-19 detection methods are being preferred worldwide. OBJECTIVE: Machine vision-based COVID-19 detection methods, especially deep learning as a diagnostic method in the early stages of the pandemic, have been assigned great importance during the pandemic. This study aimed to design a highly efficient computer-aided detection (CAD) system for COVID-19 by using a neural search architecture network (NASNet)-based algorithm. METHODS: NASNet, a state-of-the-art pretrained convolutional neural network for image feature extraction, was adopted to identify patients with COVID-19 in their early stages of the disease. A local data set, comprising 10,153 computed tomography scans of 190 patients with and 59 without COVID-19 was used. RESULTS: After fitting on the training data set, hyperparameter tuning, and topological alterations of the classifier block, the proposed NASNet-based model was evaluated on the test data set and yielded remarkable results. The proposed model's performance achieved a detection sensitivity, specificity, and accuracy of 0.999, 0.986, and 0.996, respectively. CONCLUSIONS: The proposed model achieved acceptable results in the categorization of 2 data classes. Therefore, a CAD system was designed on the basis of this model for COVID-19 detection using multiple lung computed tomography scans. The system differentiated all COVID-19 cases from non-COVID-19 ones without any error in the application phase. Overall, the proposed deep learning-based CAD system can greatly help radiologists detect COVID-19 in its early stages. During the COVID-19 pandemic, the use of a CAD system as a screening tool would accelerate disease detection and prevent the loss of health care resources.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/virology , Deep Learning , Diagnosis, Computer-Assisted , Lung/diagnostic imaging , Lung/virology , SARS-CoV-2/isolation & purification , Datasets as Topic , Early Diagnosis , Humans , Pandemics , Tomography, X-Ray Computed
14.
Front Mol Biosci ; 8: 614207, 2021.
Article in English | MEDLINE | ID: covidwho-1191696

ABSTRACT

BACKGROUND: Characteristic chest computed tomography (CT) manifestation of 2019 novel coronavirus (COVID-19) was added as a diagnostic criterion in the Chinese National COVID-19 management guideline. Whether the characteristic findings of Chest CT could differentiate confirmed COVID-19 cases from other positive nucleic acid test (NAT)-negative patients has not been rigorously evaluated. PURPOSE: We aim to test whether chest CT manifestation of 2019 novel coronavirus (COVID-19) can be differentiated by a radiologist or a computer-based CT image analysis system. METHODS: We conducted a retrospective case-control study that included 52 laboratory-confirmed COVID-19 patients and 80 non-COVID-19 viral pneumonia patients between 20 December, 2019 and 10 February, 2020. The chest CT images were evaluated by radiologists in a double blind fashion. A computer-based image analysis system (uAI System, Lianying Inc., Shanghai, China) detected the lesions in 18 lung segments defined by Boyden classification system and calculated the infected volume in each segment. The number and volume of lesions detected by radiologist and computer system was compared with Chi-square test or Mann-Whitney U test as appropriate. RESULTS: The main CT manifestations of COVID-19 were multi-lobar/segmental peripheral ground-glass opacities and patchy air space infiltrates. The case and control groups were similar in demographics, comorbidity, and clinical manifestations. There was no significant difference in eight radiologist identified CT image features between the two groups of patients. There was also no difference in the absolute and relative volume of infected regions in each lung segment. CONCLUSION: We documented the non-differentiating nature of initial chest CT image between COVID-19 and other viral pneumonia with suspected symptoms. Our results do not support CT findings replacing microbiological diagnosis as a critical criterion for COVID-19 diagnosis. Our findings may prompt re-evaluation of isolated patients without laboratory confirmation.

15.
Cognit Comput ; : 1-13, 2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1124626

ABSTRACT

A novel strain of Coronavirus, identified as the Severe Acute Respiratory Syndrome-2 (SARS-CoV-2), outbroke in December 2019 causing the novel Corona Virus Disease (COVID-19). Since its emergence, the virus has spread rapidly and has been declared a global pandemic. As of the end of January 2021, there are almost 100 million cases worldwide with over 2 million confirmed deaths. Widespread testing is essential to reduce further spread of the disease, but due to a shortage of testing kits and limited supply, alternative testing methods are being evaluated. Recently researchers have found that chest X-Ray (CXR) images provide salient information about COVID-19. An intelligent system can help the radiologists to detect COVID-19 from these CXR images which can come in handy at remote locations in many developing nations. In this work, we propose a pipeline that uses CXR images to detect COVID-19 infection. The features from the CXR images were extracted and the relevant features were then selected using Hybrid Social Group Optimization algorithm. The selected features were then used to classify the CXR images using a number of classifiers. The proposed pipeline achieves a classification accuracy of 99.65% using support vector classifier, which outperforms other state-of-the-art deep learning algorithms for binary and multi-class classification.

16.
Pattern Recognit ; 110: 107613, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-850438

ABSTRACT

The COVID-19 outbreak continues to threaten the health and life of people worldwide. It is an immediate priority to develop and test a computer-aided detection (CAD) scheme based on deep learning (DL) to automatically localize and differentiate COVID-19 from community-acquired pneumonia (CAP) on chest X-rays. Therefore, this study aims to develop and test an efficient and accurate deep learning scheme that assists radiologists in automatically recognizing and localizing COVID-19. A retrospective chest X-ray image dataset was collected from open image data and the Xiangya Hospital, which was divided into a training group and a testing group. The proposed CAD framework is composed of two steps with DLs: the Discrimination-DL and the Localization-DL. The first DL was developed to extract lung features from chest X-ray radiographs for COVID-19 discrimination and trained using 3548 chest X-ray radiographs. The second DL was trained with 406-pixel patches and applied to the recognized X-ray radiographs to localize and assign them into the left lung, right lung or bipulmonary. X-ray radiographs of CAP and healthy controls were enrolled to evaluate the robustness of the model. Compared to the radiologists' discrimination and localization results, the accuracy of COVID-19 discrimination using the Discrimination-DL yielded 98.71%, while the accuracy of localization using the Localization-DL was 93.03%. This work represents the feasibility of using a novel deep learning-based CAD scheme to efficiently and accurately distinguish COVID-19 from CAP and detect localization with high accuracy and agreement with radiologists.

SELECTION OF CITATIONS
SEARCH DETAIL